Abstract
To take advantage of both the low density and thermal conductivity of hollow glass microspheres, and the high mechanical and electrical conductivity of carbon-based nanofillers, micro- and nanosized fillers can be combined into a single composite material. Here we prepared composite materials from hollow glass microspheres (HGMs) and from the same microspheres surrounded by carbon nanofibers (CNFs). By adding 10% wt. of HGM-CNFs to a high-temperature resin we can obtain a low density (0.8 g/cm3), low thermally (0.17 W/mK) and high electrically conductive (7±3×10−4S/m) composite. This novel method demonstrates the possibility to achieve an unusual combination of properties such as low thermal and high electrical conductivity which, along with their light weight and thermal stability, makes these materials promising for aerospace applications or thermoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.