Abstract

An efficient and robust numerical method is presented for the dynamic analysis of low-tension cables. The numerical solution strategy is based on finite-difference approximations of differential equations. In a scheme used by other researchers, known as the box scheme, the trapezoidal method is employed in both space and time domains. This scheme, however, gives rise to spurious high-frequency oscillations in cable tension response, as discovered in the research work reported herein. A modified box scheme is proposed to eliminate the problem. To improve computational efficiency, an iterative procedure is used to solve the resulting nonlinear simultaneous equations. A “free-fall” problem of cable dynamics involving low tension and large displacement motion is studied numerically. An experimental program is carried out to verify the accuracy of the numerical solution with regards to cable tension response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.