Abstract

Motional quantum effects of tunneling methyl radical isolated in solid gases as they appear on experimental electron paramagnetic resonance (EPR) spectra are examined. Obtained analytical expressions of the tunneling frequency for methyl rotor/torsional-oscillator utilizing localized Hermite polynomials are compared to full numerical computations and tested against experimental EPR lineshape simulations. In particular, the X-band of methyl radical was displaying partial anisotropy averaging even at lowest temperatures. EPR lineshape simulations involving rotational dynamics were applied for the accurate determination of the potential barrier and the tunneling frequency. Tunneling frequency, as the splitting between the A and E torsional levels by the presence of a periodic C3 model potential with periodic boundary conditions, was computed and related to the EPR-lineshape alteration. The corresponding C2 rotary tunneling about the in-plane axes of methyl was also studied while both the C2 and C3 rotations were compared with the rotation of deuteriated methyl radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.