Abstract

We have investigated the low temperature transport properties of the cubic Γ3 compound PrTi2Al20. This is a quadrupolar Kondo lattice system where the nongmagnetic quadrupoles, which form a long-range order at low temperatures, have strong hybridization with the conduction electrons. A sharp drop of the resistivity due to a ferroquadrupole ordering is observed at T Q = 2.0 K. The T 2 dependence of the resistivity and the large Sommerfeld coefficient γ above T Q suggest the formation of a heavy-fermion state. The temperature dependence of the resistivity below T Q does not show a power law but exponential law behavior, indicating the emergence of an anisotropy gap Δ in the collective mode associated with the ferroquadrupole order below T Q. The Fisher-Langer relation holds around T Q, suggesting the higher order scattering processes than those in Born approximation are not dominant for this ferroquadrupole ordering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call