Abstract

In this work, the organic light-emitting diodes (OLEDs) based on Alq3 are fabricated. In order to make clear the transport mechanism of carriers in organic light-emitting devices at low temperature, detailed electroluminescence transient response and the current-voltage–luminescence (I–V–L) characteristics under different temperatures in those OLEDs are investigated. It founds that the acceleration of brightness increases with increasing temperature is maximum when the temperature is 200K and it is mainly affected by the electron transport layer (Alq3). The MoO3 injection layer and the electroluminescent layer have great influence on the delay time when the temperature is 200K. Once the temperature is greater than 250K, the delay time is mainly affected by the MoO3 injection layer. On the contrary, the fall time is mainly affected by the electroluminescent material. The Vf is the average growth rate of fall time when the temperature increases 1K which represents the accumulation rate of carriers. The difference between Vf caused by the MoO3 injection layer is 0.52us/K and caused by the electroluminescent material Ir(ppy)3 is 0.73us/K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.