Abstract
We report here the design and implementation of a precise and easy to operate thermally stimulated depolarization current (TSDC) measurement setup for temperature range 77–400 K. The sample loading is made simple by sandwiching the sample between two copper disk electrodes using a spring-shaft arrangement. The salient features of the setup are precise thermal windowing (TW) capability and linear heating rate over the entire temperature range. The resolution in the measurement of depolarization current is of the order of 7×10−14 A. This is achieved by means of good electrical insulation of the electrodes from the rest of the setup and utilization of low noise circuitry. Precision of the system is demonstrated by its capability to resolve constituent relaxations present in complex relaxation processes using the TW experiments. Study and detection of glass transition processes in polyethylene terephthalate, four relaxation processes in polymethyl methacrylate, glass and crystallization transitions along with the onset of ferroelectric Curie transitions in polyvinylidene fluoride and characterization of electret state in amino acids l-arginine, phenylalanine, tyrosine, tryptophan, glutamic acid, glutamine and methionine show the versatility of our setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.