Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) detected changes in Filgrastim (granulocyte colony stimulating growth factor, G-CSF) adsorption behavior at a solid interface when exposed to temperatures as low as 35 °C, i.e., before thermal denaturation, was detected by circular dichroism (CD) or dynamic light scattering (DLS). Biopharmaceuticals rely on maintaining sufficient conformation to impart correct biological function in vivo. Stability of such molecules is critical during synthesis, storage, transport, and administration. CD analysis indicated loss of structure at temperatures greater than ~60 °C, while DLS detected aggregation at ~42 °C. Furthermore, we demonstrate the nature of G-CSF interaction with a surface was altered rapidly and at relatively low temperatures. Specifically, after 10 min thermal treatment, changes in adsorption behavior occurred at 35 °C indicated by principal component analysis of spectra as primarily due to increasing yields of methionine fragments. This was likely to be due to either altering the preferential protein orientation upon adsorption or greater denaturation exposing the hydrophobic core. This investigation demonstrates the sensitivity of ToF-SIMS in studying biopharmaceutical adsorption and conformational change and can assist with studies into promoting their stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.