Abstract
The thermal conductivity of 5056 aluminum alloy was determined from 4.2K to 120K using a differential steady-state method. This method has been implemented in a low temperature cryostat using a Gifford–McMahon cryocooler as heat sink. The thermal conductivity of the 5056 H39 aluminum alloy was determined since it was under consideration as a part of a thermal link for the Planck research satellite. As expected, below 10K the thermal conductivity is exclusively given by the electron-defect scattering term. At higher temperature, the other terms from the electronic and the lattice contributions come into play but the electronic thermal conductivity term is still dominant. A workable fit, based on theory, is presented and can be used up to 300K. Our measurements are compared with data at lower temperature and available fits from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.