Abstract

Using the scattering-matrix cascading method, we investigate the effect of structural defect on the acoustic phonon transmission and thermal conductance in the superlattice nanowire at low temperatures. In the present system, the phonon transmissions exhibit quite complex oscillatory behaviour. It is found that a lateral defect in an otherwise periodic structure significantly decrease the thermal conductance and completely washes away the transmission quantization. However, the appreciable transmission quantization survives in the presence of a longitudinal defect whereas a good quantization plateau of thermal conductance emerges below the universal level in a wide temperature range with the lateral defect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.