Abstract

Spinel-type manganese-cobalt oxides have been regarded as important class of electrocatalysts for oxygen reduction reaction (ORR). However, they are usually synthesized through oxidation-precipitation under aqueous ammonia and then crystallization at high temperature (150–180 °C), which not only increases the energy consumption but also induces the growth of particles that is unfavorable for ORR. Herein, through a facile precipitation-dehydration method, ultrasmall spinel manganese-cobalt oxide nanoparticles (~5 nm) homogeneously dispersed on conductive carbon black (MnxCo3-xO4/C) were fabricated at low temperature (60 °C). And the bimetallic composite oxide (Mn1.5Co1.5O4/C) with cubic spinel structure and high Mn content exhibits remarkable enhancement of ORR activity and stability compared with single metal oxide (both Mn3O4/C and Co3O4/C). The essential reason for the enhancement of activity can be attributed to the presence of the mixed Mn3+ and Mn4+ cations in Mn1.5Co1.5O4/C. Moreover, the ORR activity of Mn1.5Co1.5O4/C is comparable to that of commercial 20 wt% Pt/C, and the relative current density only decreases 1.4% after 12 h test, exceeding that of Pt/C and most reported manganese-cobalt oxide electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.