Abstract

Bamboo is readily infected with fungi because of its abundant sugar, starch and protein content, which greatly restricts its utilization. To develop a highly effective environmentally sound antifungal agent for bamboo, flower-like ZnO microstructures supported on TiO2 thin films have been synthesized on bamboo surfaces by a facile two-step low-temperature hydrothermal method. According to the results of various analytical techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared–attenuated total reflectance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, the bamboo substrate combined with anatase TiO2 by a hydrogen bonding or ligand exchange reaction between F― and –OH. The F― ions on the TiO2 surface combined with [Zn(NH3)4]2+ via electrostatic adsorption, contributing to the formation of a flower-like ZnO microstructure, and were then deposited on the TiO2 thin films. Moreover, the antifungal activities of the samples against a hybrid fungi group consisting of Trichoderma viride Pers. ex Fr (T. viride), Penicillium citrinum Thom (P. citrinum), and Aspergillus niger v. Tiegh (A. niger) were investigated during a three-month period under dark conditions. The results showed that pure TiO2 thin films coated on bamboo presented better antifungal activities, with a 21-day inhibition, than that of the pristine bamboo, with a 5-day inhibition. The flower-like ZnO microstructures supported on the TiO2 thin films bamboo exhibited effective antifungal capability, with a 90-day inhibition. The efficient antifungal behavior is due to the increased generation of reactive oxygen species (ROS) from the coatings by a possible synergistic effect between the ZnO and TiO2 nanoparticles in attacking fungi and causing their death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call