Abstract

In this study, the N-doped carbon dots were continuously synthesized by a facile microfluidic strategy at 90 °C, and their quantum yields reached 19.2%. The characteristics of the obtained carbon dots could be real-time monitored in order to synthesize carbon dots with specific properties. By incorporating the carbon dots into a well-established enzymatic cascade amplification system, an inner filter effect-based fluorescence immunoassay was set up for ultrasensitive detection of cefquinome residues in milk samples. The developed fluorescence immunoassay provided a low detection limit of 0.78 ng/mL, which satisfied the maximum residue limit set by authorities. The fluorescence immunoassay had an 50% inhibition concentration of 0.19 ng/mL against cefquinome and showed a good linear relationship from 0.013 ng/mL to 1.52 ng/mL. While, the average recovery values ranged from 77.8% to 107.8% in spiked milk samples, with relative standard deviations ranging from 6.8% to 10.9%. Compared with conventional methods, the microfluidic chip was more flexible on carbon dots synthesis and the developed fluorescence immunoassay was more sensitive and eco-friendlier for ultra-trace cefquinome residue analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call