Abstract

The present article demonstrates designing of novel catalyst, 12-tungstosilicic acid (TSA) anchored to ordered nano-porous MCM-48 (nMCM-48); TSA/nMCM-48, characterization and evaluation for synthesis of bio-fuel additives via glycerol valorisation with aromatic aldehydes. The nanopores of support were confirmed by BET and TEM while the interaction between TSA and nMCM-48 was confirmed by decrease in the surface area and pore volume of the catalysts. Assessment of vital reaction parameters (% loading of active species, mole ratio of reactants, catalyst amount, temperature and time) were performed to achieve maximum conversion of glycerol. The catalyst showed noteworthy performance at 30 °C towards conversion (>85 %) and thermodynamically stable dioxane derivative (>60 %) with remarkable TON (5945 for benzaldehyde and 7355 for furfural). The catalyst was regenerated and used for successive four catalytic runs with almost same activity. The superiority of novel catalyst is because of its geometry and nano porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.