Abstract

Vertically aligned carbon nanofiber (CNF) films were successfully grown on glass substrates at 450 °C with metal buffer layers by inductively coupled plasma chemical vapor deposition (ICP-CVD). The diameter and number density of the aligned CNFs can be controlled by changing the type and thickness of the metal buffer layers deposited on the glass substrates. The metal buffer layers play an important role in reducing the thermal expansion coefficient difference between the catalyst metal film and the glass substrate, resulting in the enhancement of the formation of catalyst nanoparticles so as to grow the aligned CNFs with high number density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.