Abstract

Recent interest in low and negative thermal expansion materials has led to significant research on compounds that exhibit this property, much of which has targeted the A2M3O12 family (A = trivalent cation, M = Mo, W). The expansion and phase transition behavior in this family can be tuned through the choice of the metals incorporated into the structure. An undesired phase transition to a monoclinic structure with large positive expansion can be suppressed in some solid solutions by substituting the A-site by a mixture of two cations. One such material, AlScMo3O12, was successfully synthesized using non-hydrolytic sol-gel chemistry. Depending on the reaction conditions, phase separation into Al2Mo3O12 and Sc2Mo3O12 or single-phase AlScMo3O12 could be obtained. Optimized conditions for the reproducible synthesis of stoichiometric, homogeneous AlScMo3O12 were established. High resolution synchrotron diffraction experiments were carried out to confirm whether samples were homogeneous and to estimate the Al:Sc ratio through Rietveld refinement and Vegard’s law. Single-phase samples were found to adopt the orthorhombic Sc2W3O12 structure at 100 to 460 K. In contrast to all previously-reported A2M3O12 compositions, AlScMo3O12 exhibited positive thermal expansion along all unit cell axes instead of contraction along one or two axes, with expansion coefficients (200–460 K) of αa = 1.7 × 10−6 K−1, αb = 6.2 × 10−6 K−1, αc = 2.9 × 10−6 K−1 and αV = 10.8 × 10−6 K−1, respectively.

Highlights

  • Expansion is an important property of a material for many applications [1,2,3,4]

  • NTE materials contract upon heating, which is described by a negative thermal expansion coefficient α

  • The decomposition temperature of the samples is similar to Al2Mo3O12, indicating that AlScMo3O12 may phase separate into Al2Mo3O12 and Sc2Mo3O12 before it decomposes

Read more

Summary

Introduction

Expansion is an important property of a material for many applications [1,2,3,4]. While positive thermal expansion materials are a well-established field, negative thermal expansion (NTE) materials have only been thoroughly studied for a couple of decades [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]. Many other compositions were obtained at considerably lower temperatures than samples prepared by other methods [68] This demonstrates that the NHSG approach offers the potential to obtain compounds with cations that do not readily form A2M3O12 compositions (e.g., Ga) and that the intimate mixing in solution can result in more facile crystallization. These observations suggest that this method should be suitable for combining cations with considerably different ionic radii under optimized reaction conditions.

Experimental Section
Reaction Completeness and Crystallization Behavior
Structure and Homogeneity of Samples
Expansion Behavior of AlScMo3O12
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call