Abstract
We present an extensive study of the magnetic reversal mechanism of Fe and Ni nanowires with diameters down to 6 nm, i.e. smaller than the domain wall width. The coercive field at 5 K is a factor of 3 lower than the prediction for rotation in unison. We also observe that the activation energy associated with the reversal process is proportional to the cross-section of the wires and nearly independent of the wire length. From the temperature dependence of the coercive field and the magnetic viscosity we can conclude that magnetization reversal takes place via a nucleation of a small magnetic domain, probably at the end of the wire, followed by the movement of the domain wall. For Co wires, we observe a different behavior that is dominated by the competition between the shape anisotropy and the temperature-dependent magnetocrystalline anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.