Abstract
SnOx:Sb films have been prepared by reactive dc magnetron sputtering from a metallic target, with the aim of evaluating the potential of SnOx:Sb as an attractive low-cost alternative to In2O3:Sn (ITO) for TCO applications. The deposition was performed without any additional heating of the substrates. The films were subsequently analysed regarding their optical, electrical and structural properties. Our results show that there is only a narrow process window for the sputter deposition of transparent and conducting tin oxide films at low temperature. A sharp minimum in resistivity of 4.9mΩcm is observed at an oxygen content of approximately 17% in the sputtering gas. Under these deposition conditions, the SnO2:Sb films turn out to be both highly transparent and crystalline. At lower oxygen content (10–15%) the SnOx:Sb films are substoichiometric, as revealed by Rutherford backscattering, and show a low transmission and high resistivity due to numerous defects and the presence of the SnO phase. At higher oxygen content (>17%) excess oxygen is incorporated into the films, which is attributed to an increase of oxygen ion bombardment. This leads to a degradation of the electrical properties and a decrease of the density of the films, whilst the optical transmittance slightly improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.