Abstract
Ti6Al4V/hydroxyapatite composites (TC4/HA) have been prepared by high energy ball milling and low temperature spark plasma sintering at 600°C, 550°C, 500°C and 450°C, respectively. The sintering temperature of the composites was sharply decreased as the result of the activation and surficial modification effects induced from high energy ball milling. The decomposition and reaction of hydroxyapatite was successfully avoided, which offers the composites superior biocompatibility. The hydroxyapatite in the composites was distributed in gap uniformly, and formed an ideal network structure. The lowest hardness, compressive strength and Young's modulus of the composites satisfy the requirements of human bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.