Abstract

Nanosized intermetallic compound NiSb was successfully synthesized by a solvothermal route and studied as a promising anode material for secondary lithium-ion batteries. The as-prepared NiSb powder was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The electrochemical performance of the nanosized NiSb electrode was investigated by constant current charge and discharge cycling and electrochemical impedance spectroscopy (EIS). It was found that the nanosized NiSb shows a higher initial capacity compared to microsized one prepared by a levitation-melting/ball-milling route due to larger specific surface area of the nanomaterial. The nanosized NiSb shows a rapid capacity fade due to the pulverization and exfoliation of active material caused by severe electrochemical grinding upon long-term cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.