Abstract

The interest in investigating hollow core–shell nanostructures was stimulated by their intrinsic advantage in light absorption and photocarrier separation for promising applications in photoelectrochemical devices. Here, SnO2@TiO2 core–shell hierarchical tubular structure was designed and prepared via a low-temperature solution route using carbon nanofibers as templates. The heterostructure consists of SnO2 nanotubes and TiO2 nanocones, which facilities photocarrier separation and transport by built-in electric field at their interface, and direct transport path served by SnO2 nanotubes. The large specific surface area was also believed to contribute to improve performance by providing more active sites for chemical reactions. After assembling into a photoelectrochemical-type ultraviolet photodetector, the detector exhibits a high short-circuit photocurrent density of 870 μA cm–2 under ultraviolet illumination (λ = 365 nm) of 35 mW cm–2 without bias voltage. The photosensitivity can reach up to 3781, and the feature response time was in microseconds, 33 ms for rise process and 13 ms for decay process. It is believed that this structure with combined advantageous features is extendable to other photoelectrochemical cases, such as dye-sensitized solar cells and artificial photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.