Abstract

Aromatic soluble polyimides (PIs) have been widely used in organic field-effect transistors (OFETs) as gate dielectric layers due to their promising features such as outstanding chemical resistance, thermal stability, low-temperature processability, and mechanical flexibility. However, the molecular structures of soluble PIs on the electrical characteristics of OFETs are not yet fully understood. In this work, the material, dielectric, and electrical properties are evaluated to systematically investigate the chemical structure effect of aromatic dianhydride and diamine monomers on the device performance. Four soluble PIs based on 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 5-(2,5-Dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, in which the monomeric precursors contain different backbones, side groups, and linkages, were employed to compare the chemical structure impact. The dielectric properties, which significantly affect the charge transport and crystallinity of OSC thin films, clearly depended on the soluble PI types as well as the surface energy and the thermal stability. Furthermore, the electrical characteristic measurement and parameter extraction of OFETs based on TIPS-pentacene revealed that the 6FDA-based soluble PIs, which lead to high field-effect mobility, near-zero threshold electric field, and outstanding electrical stability under bias stress, are the most promising gate dielectric candidates. Finally, low-temperature solution-processed OFETs are successfully integrated with ultrathin flexible substrates, and they exhibit no significant electrical performance loss after mechanical flexibility tests. This work presents a step forward in the development of soluble PI gate dielectrics for flexible electronic devices with high device performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.