Abstract
The production of high-performance, solution-processed kesterite Cu2ZnSn(Sx,Se1-x)4 (CZTSSe) solar cells typically relies on high-temperature crystallization processes in chalcogen-containing atmosphere and often on the use of environmentally harmful solvents, which could hinder the widespread adoption of this technology. We report a method for processing selenium free Cu2ZnSnS4 (CZTS) solar cells based on a short annealing step at temperatures as low as 350 °C using a molecular based precursor, fully avoiding highly toxic solvents and high-temperature sulfurization. We show that a simple device structure consisting of ITO/CZTS/CdS/Al and comprising an extremely thin absorber layer (∼110 nm) achieves a current density of 8.6 mA/cm(2). Over the course of 400 days under ambient conditions encapsulated devices retain close to 100% of their original efficiency. Using impedance spectroscopy and photoinduced charge carrier extraction by linearly increasing voltage (photo-CELIV), we demonstrate that reduced charge carrier mobility is one limiting parameter of low-temperature CZTS photovoltaics. These results may inform less energy demanding strategies for the production of CZTS optoelectronic layers compatible with large-scale processing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.