Abstract
Solution-phase approaches to one-dimensional (1D) ZnO nanostructure arrays are appealing because of their good potential for scale-up. Allowing for a wide variety of substrate material compatibility and saving energy, it is very essential to further research the low-temperature growth process of 1D ZnO nanostructure arrays and its detailed growth mechanism. In this study, large-scale misaligned hexagonal ZnO nancone arrays were synthesized on bare copper foil, while large-scale well-aligned, and highly oriented ZnO nanorod arrays were grown on seeded copper foil through a facile solution processing method at normal atmospheric pressure at 35 °C. X-ray diffraction analysis verified the crystalline nature of the ZnO nanocone/nanorods, and transmission electron microscopy further confirmed the single-crystal nature and the preferential growth direction of the ZnO nanocone/nanorods. The room-temperature photoluminescence measurement qualitatively identified the intrinsic point defects in the ZnO nanocones/nanorods. Besides, the detailed growth behavior of ZnO was discussed with and without a ZnO seed layer, which provides useful information to propose the growth mechanism of the nanocone/nanorods in the low-temperature solution. The method developed here can be easily scaled up to fabricate ZnO nanostructures for many important applications in field emission display, gas sensors, and superhydrophobic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.