Abstract

La 1− x Sr x MnO 3 (LSM) has been widely developed as the cathode material for high-temperature solid oxide fuel cells (SOFCs) due to its chemical and mechanical compatibilities with the electrolyte materials. However, its application to low-temperature SOFCs is limited since its electrochemical activity decreases substantially when the temperature is reduced. In this work, low-temperature SOFCs based on LSM cathodes are developed by coating nanoscale samaria-doped ceria (SDC) onto the porous electrodes to significantly increase the electrode activity of both cathodes and anodes. A peak power density of 0.46 W cm −2 and area specific interfacial polarization resistance of 0.36 Ω cm 2 are achieved at 600 °C for single cells consisting of Ni-SDC anodes, LSM cathodes, and SDC electrolytes. The cell performances are comparable with those obtained with cobalt-based cathodes such as Sm 0.5Sr 0.5CoO 3, and therefore encouraging in the development of low-temperature SOFCs with high reliability and durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.