Abstract

A scanning tunneling microscope operating at cryogenic temperatures is described. Results from topographic and spectroscopic measurements are presented for surfaces of NbN and graphite at a temperature of 6.5 K. A unique feature of this system is the very low spatial drift and the resulting high positional stability. The topographic data on NbN display a grainy structure. No indications for a superconductive energy gap are found from the tunnel spectroscopy. In the ordered graphite structure, domains are found separated by dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.