Abstract

Vein-calcite–dominated fault rocks collected from several locations show evidence for intense intracrystalline plasticity and interface (twin and grain boundary) mobility, leading to dynamic recrystallization of calcite at temperatures (150–250 °C) significantly below those at which these features are commonly anticipated. These observations require a reappraisal of calcite deformation at low temperature, particularly the capability for dynamic recrystallization in the apparent absence of significant, thermally activated recovery processes. The cyclic introduction of coarse-grained calcite veins is observed to be essential for the initiation of intracrystalline deformation and associated dynamic recrystallization. The introduction of veins generates an essentially monomineralic rock of a grain size larger than the protolith. As a result, the mylonitization does not occur within a given protolith, but rather in the introduced secondary calcite. Through Hall-Petch–type grain- size–dependent dislocation interactions, stress is locally increased, and the resulting increase in dislocation densities promotes grain-boundary migration. The recognition that nominal high-temperature creep processes and associated microstructures can occur outside their expected temperature range has implications for fault rheology (strength) and fault permeability and porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.