Abstract

The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 106 cm−2. Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call