Abstract
We developed a novel optical defocusing method for studying spatial coherence of photoexcited electrons and holes near edges of graphene. Our method is applied to measure the localization l(D) of the disorder-induced Raman D band (∼1350 cm(-1)) with a resolution of a few nanometers. Raman scattering experiments performed in a helium bath cryostat reveal that as temperature is decreased from 300 to 1.55 K, the length l(D) increases. We found that the localization of the D band varies as 1/T(1/2), giving strong evidence that l(D) scales with the coherence length of photoexcited electrons near graphene edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.