Abstract

Low-temperature pyrolysis up to 200, 250, 300 °C was conducted in order to remove non-cellulosic compounds without damaging the structure of the cellulose in jute fibers. The chemical, morphological, and mechanical aspects of prepared low-temperature pyrolyzed jute fibers were investigated by Fourier transform infrared (FTIR) spectroscopy, the wettability test in water/dichloromethane system, moisture content measurement, X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and tensile test using universal testing machine (UTM). It was confirmed that hydrophilic compounds including absorbed water, low molecular weight compounds such as waxes, hemicellulose, and lignin were largely removed from the fibers. Increasing amounts of non-cellulosic compounds were removed as the maximum pyrolysis temperature was increased. The degree of hydrophilic nature of jute fibers were reduced by low-temperature pyrolysis and thus water absorptivity of pyrolyzed jute fibers was reduced as maximum pyrolysis temperature increased. Furthermore, XRD analysis and morphological studies by SEM indicated that the crystalline structure of native cellulose was rarely damaged after pyrolysis up to 300 °C. In case of mechanical properties, breaking tenacity and breaking strain of the fibers decreased with increasing maximum pyrolysis temperatures because flaws formed on the surface of pyrolyzed jute fibers acted as weak-links. In agreement with predictions made according to Weibull’s weakest-link theory, it was found that shortened pyrolyzed jute fibers could have higher breaking tenacities compared with raw jute fibers of the same length. In addition, the compatibility with hydrophobic matrix was investigated by the mechanical properties of polypropylene (PP) reinforced with jute fibers. Consequently, it was hypothesized that low-temperature pyrolysis could be used to process raw jute fibers for use as short fiber reinforcements in fiber-polymer systems or be a simple and effective pretreatment method for a wide range of further chemical treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.