Abstract
Theoretical analysis of the layered quasi-periodic Fibonacci structures (superlattices-sequence) is presented for the systems consisting of nA and nB ferromagnetically ordered planes within the layers with Sa and Sb spins, respectively, while the interfaces are coupled with bilinear and/or biquadratic exchange interaction, within the framework of localized spin model in the low-temperature limit. Transfer matrix method and direct diagonalization after the bosonization in Bloch's approximation resulted both in the same analytical expression for the magnon-excitation energy. The equivalence (at low-temperatures) of the transfer matrix (spin) and boson approach was discussed, as well as the role of the interlayer biquadratic coupling between different blocks constituting the Fibonacci sequences. Also, our approach allows the determination of the internal energy and calculation of the magnon contribution to the specific heat. It was clearly demonstrated that the magnon specific heat vanishes for T → 0. Our results are compared with the results of other authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.