Abstract

All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.