Abstract

Zirconium carbide (ZrC) coatings were prepared on C/C composite via molten salt reaction process at relatively low temperatures of 800-1000°C. During the reaction process, potassium fluorozirconate (K2ZrF6) played a role transporting zirconium from the molten salt to the C/C composite surface. Elevating reaction temperature increased the growth rate of coatings, simultaneously leaded to rougher coatings. The coatings growth rate increased with reaction time at first and then decreased gradually. The ZrC coatings prepared at 900°C for 5h was ~2m thickness. At the early stage, the low solubility of zirconium in the molten salt leaded to the low coatings growth rate. Secondly, the growth rate of the ZrC coatings was controlled by the chemical reaction between C/C composites and zirconium once zirconium was saturated in the molten salts. Thirdly, the control step of coatings formation turned into the diffusion of carbon through the formed ZrC coatings and which leaded to a gradual decrease of growth rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call