Abstract
Conventional approaches to preparing highly fluorinated multiwalled carbon nanotubes (MWCNTs) always require a high temperature. This paper presents a catalytic approach to realizing the effective fluorination of MWNCTs at room temperature (RT). Fe3O4/MWCNTs composites with Fe3O4 loaded on MWCNTs were first prepared using the solvothermal method, followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4/MWCNTs (F-Fe3O4/MWCNTs) can reach up to 17.13 at% (almost six times that of the unloaded sample) only after fluorination at room temperature, which leads to an obvious decrease in permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormally enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4/CNTs composite exhibits increased impedance matching and thus an enhanced microwave absorption property with a minimal reflection loss of −45 dB at 2.61 mm when the filler content is 13 wt%. The efficient absorption bandwidth (<−10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to preparing highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.