Abstract

Highly active TiO2 photocatalysts prepared at a low temperature are promising reagents to degrade organic pollutants. Moreover, the addition of macroporous resins should overcome the poor adsorption properties of TiO2. Here we prepared N-doped TiO2/macroporous resin composites at low temperatures using a hydrothermal-assisted sol–gel method. The results show that the composites have a spherical appearance, which is controlled by the macroporous resin. The composites exhibit high specific surface areas, and the microstructure can be tuned by the temperature. N can be doped into the TiO2 crystal by substitution of oxygen at a lower temperature. N-doped TiO2 particles are distributed on the surface with a dominant crystal form of anatase. The composite prepared at 200 °C gave the best performance for the photocatalytic degradation of rhodamine B, with removal efficiency of 74.8% following 240-min irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call