Abstract

A new method for preparation of a carbon nanotube (CNT)–zinc oxide hybrid on a glass substrate at low temperature is introduced and the stability improvement of field emission of CNTs is reported. The emission current stability and substrate material are the two main commercial parameters for field emission applications of CNTs. The two alternative current (AC) and direct current (DC) plasma enhancement chemical vapor deposition (PECVD) is used to achieve low-temperature growth of vertically aligned CNTs and the hydrothermal processing is used for production of zinc oxide nanowires to improve the emission current stability and properties. The nanoscale junction between a semiconductor and conductive material are critical for electronic applications. The present study examined the field emission properties of CNTs near the crystalline structure of the zinc oxide hybrids and showed the improvement in the field enhancement factor and emission current stability of CNT– ZnO hybrid than the CNT emitters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call