Abstract

AbstractThe mechanism by which dislocations move in the icosahedral quasicrystalline structure, i.e., glide or climb, is still an open question. In order to check whether pure dislocation glide occurs in this quasi-periodic structure, low temperature deformation tests have been performed under confining pressure conditions. These experimental techniques, which superimpose a shear stress on an isostatic component, enable the brittle-to-ductile transition temperature to be shifted to temperatures at which diffusion processes can be assumed to be negligible. Such techniques have been applied to deform plastically AlCuFe poly-quasicrystals at low and intermediate temperatures, using both gas and solid-confining media. Mechanical data as well as microstructural observations associated with this low temperature deformation range are reported. The first results provide new insights into the deformation mechanisms that control plasticity in the icosahedral quasicrystalline phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.