Abstract

The Peltier heat of a wide-band itinerant carrier in a ferromagnetic semiconductor has been calculated for temperatures below the Curie temperature. In this regime we treat the spin fluctuations within the spin-wave approximation. The coupling of the charge carrier to the local moments is via local intra-atomic (e.g., s-f or s-d) exchange. Taking the strength of the intra-atomic exchange interaction to be small compared with the carrier's electronic bandwidth, we treat the interaction between the carrier and the local moments perturbatively through second order. We use the perturbed energy to compute the free energy of the coupled electron-magnon system. From the carrier-induced change of the system's free energy we directly obtain the carrier's Peltier heat. The Peltier heat contains two terms of opposite sign which both increase in magnitude with increasing temperature. These two terms arise from the first- and second-order contributions to the energy of the coupled system. Except at very low temperatures, the first-order contribution dominates. Then the electron-magnon interaction provides a negative contribution to the Peltier heat of a ferromagnetic semiconductor. The magnitude of this contribution varies as ${T}^{3/2}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.