Abstract

Different transition metals (Cr/Fe/Mn/Co) derived catalysts supported on γ-Al2O3 were prepared by the isovolumetric impregnation method for catalytic ozonation of acetone (C3H6O), and their catalytic activities under industrial complex conditions were investigated. Among them, CrOx/γ-Al2O3 catalyst with Cr loading of 1.5%, abbreviated as Cr1.5%, achieved the best activity, benefitting from its larger surface area, larger proportion of Cr6+/Cr, more chemically desorbed oxygen species Oβ, appropriate acidity, and superiority of low-temperature reducibility. Simulated industrial conditions were used to investigate the applicability of Cr1.5% catalysts for catalytic ozonation of acetone. Results illustrated that the optimum temperature range was 120–140 °C, with molar ratio O3/C3H6O > 6. Different C3H6O initial concentrations had less effect over the activity of Cr1.5% catalysts, with little residual ozone, confirming the applicability of Cr1.5% catalysts in industrial application. The effects of sulfur/water vapor on catalytic activity were also investigated, and satisfactory resistance to sulfur or water vapor individually was obtained. Finally, in-situ DRIFTS measurement was carried out, to explore and illustrate mechanisms of acetone catalytic ozonation pathways and sulfur/water poisoning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.