Abstract
The II/VI semiconductor ZnSe is an ideal host for novel devices for quantum computation and communication as it can be made nuclear-spin free to obtain long electron spin coherence times, exhibits no electron valley-degeneracy, and allows optical access. A prerequisite to electrical quantum devices is low-resistive Ohmic contacts operating at temperatures below 10 K, which have not been achieved in ZnSe yet. Here, we present a comprehensive study on the realization of Ohmic contacts to ZnSe by three different technological approaches, ion implantation of halogen donors, epitaxial doping with in situ contact processing, and finally, a unique ZnSe regrowth technique. The latter allows fabrication of Ohmic contacts with local doping that can be used to connect to a buried conducting channel such as those used in unipolar devices. DC measurements revealed high contact resistivity for Ohmic contacts to ZnSe doped via halogene ion implantation, while in situ aluminum (Al) contacts on epitaxially chlorine-doped ZnSe yield record low contact resistivities in the order of 10–5 Ω cm2 even at cryogenic temperatures. Finally, making use of the regrowth technique, local Ohmic contacts to ZnSe are demonstrated, which still feature low contact resistivities of (1.4 ± 0.4) × 10–3 Ω cm2 at 4 K. These findings pave the way for new electrical devices in the ZnSe material system such as field-effect transistors, electrostatically defined qubits, or quantum repeaters operating at cryogenic temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.