Abstract

Transforming natural resources to energy sources, such as converting CH4 to H2 and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH4 conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)2 cocatalysts, and mechanical energy input that offers low-temperature and scalable CH4 conversion into H2 and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH4 is converted at the Ga and Ni(OH)2 interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH4 conversion without involving high temperature and harsh operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.