Abstract

A palladium/magnesium modifier, when premixed with solutions or slurries, stabilizes many analytes to higher pyrolysis and atomization temperatures. Similar behavior was seen when analyte and modifier were physically separated by pipetting them onto opposite sides of a L'vov platform. During the pyrolysis stage of the furnace heating cycle, lead, thallium, and selenium migrated from the platform surface and interacted with the modifier on the opposite side. This behavior explains the consistent stabilization by palladium of analytes in slurry samples. Under conventional operating conditions the modifier is premixed with the slurry, and on drying in the furnace, the analyte and modifier may not make close contact. However, this is unimportant since the analyte will migrate to the palladium on heating. Then the rate-limiting step leading to atomization is the release of analyte from palladium, and it is the same for solutions and slurries. Therefore, aqueous standards can be used for slurry analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call