Abstract

The investigation addresses low temperature magnetization behavior in Co 36Fe 36Si 3Al 1Nb 4B 20 alloy ribbons in their as-spun as well as annealed state. Optimum heat treatment at 875 K led to nanocrystallization whereby bcc-(FeCo)SiAl nanoparticles were dispersed in an amorphous matrix as evidenced from transmission electron microscopy. Low temperature magnetization studies were carried out in the range 77–300 K. Using the method of mathematical fittings, magnetization extrapolated to 0 K was obtained. The dependence of the magnetization with respect to temperature of BT 3/2 was used to determine the Bloch coefficient “ B” and spin wave stiffness constant “ D”. Magnetic softening revealed by lowering in the coercivity in the optimum nanostructured state was also the cause of a drop in the stiffness constant. The range of exchange interaction given by D/ T C was higher in the nanostructured state compared to the as-spun amorphous state. The effect of nanocrystallization and the resulting ferromagnetic coupling was further evidenced by low temperature magnetization studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call