Abstract
We succeeded in growing single crystals of cage-structure compounds RCd11 (R: La, Ce, and Pr) and precisely studied their low-temperature magnetic and electronic properties by measuring electrical resistivity, magnetic susceptibility, magnetization, specific heat, and the de Haas–van Alphen (dHvA) effect. We found antiferromagnetic ordering at 0.44 and 0.39 K in CeCd11 and PrCd11, respectively, and clarified the magnetic phase diagrams of the compounds. In addition, low-lying crystalline electric field (CEF) schemes were proposed from the specific heat results of both compounds. From the present study, the antiferromagnetic ordering in PrCd11 is found to be of the exchange-induced type with a singlet ground state. From the dHvA experiment, we detected small dHvA branches ranging from 7 � 10 5 to 2 � 10 7 Oe, which correspond to small Fermi surfaces. This is mainly due to a small Brillouin zone based on a large unit cell. Moreover, the dHvA frequencies and cyclotron masses are approximately the same among RCd11, revealing a localized character of 4f electrons in CeCd11 and PrCd11.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.