Abstract

Mesoporous silicon carbide with high specific surface area was successfully synthesized from an MCM-48/polyacrylamide nanocomposite precursor in the temperature range of 550–600 °C (below the melting point of Mg) by means of a magnesiothermic reduction process. The MCM-48/polyacrylamide precursor nanocomposite was prepared by in-situ polymerization of acrylamide monomer in the presence of mesoporous MCM-48 synthesized by sol-gel method. The physicochemical properties and microstructures of the nanocomposite precursor and the low-temperature SiC product were characterized by X-ray diffraction (XRD), differential scanning calorimetry-thermo gravimetric analysis (DSC-TGA), transmission electron microscopy (TEM) and N2 adsorption–desorption. TEM micrographs and Brunauer–Emmett–Teller (BET) gas adsorption studies showed that the SiC powder was nanocrystalline and had a specific surface area of 330 m2/g and a mesoporosity in the range of 2–10 nm. The presence of an exothermic peak in the DSC trace corresponds to the self-combustion process of the SiC magnesiothermic synthesis. The results also show that the carbon in excess to that required to produce SiC plays a role in the reduction of the SiO2. The mechanism of magnesiothermic synthesis of mesoporous SiC is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.