Abstract
Radiocarbon dating of soils and sediments is notoriously problematic for the purposes of dating a specific event due to their heterogeneous mix of multiple organic fractions, each of which may have a different radiocarbon age. Numerous studies have failed to agree on which sedimentary fraction or radiocarbon pre-treatment method, if any, provides the closest agreement between the age of a sedimentary fraction and that of associated plant macrofossils or charcoal. We tested the stepped-combustion method of McGeehin et al. (2001), as well as standard radiocarbon humin and humic extraction techniques, using samples from a chronologically well-constrained perennially-frozen site at Quartz Creek, Yukon Territory, Canada. The ages in closest agreement with associated radiocarbon-dated plant macrofossils and with the overlying Dawson tephra were given by the humic and humin fractions, but even these were still older than the macrofossil ages by up to 4195 ± 260 radiocarbon years. The low temperature (LT) humin method recommended by McGeehin et al. (2001) yielded ages older than the macrofossils by up to nearly 4425 ± 240 radiocarbon years. These fractions, while still providing information on the mobility and potential residence times of carbon in soils and sediments, should not be relied upon to provide consistently accurate site chronologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.