Abstract

Non-volatile memory devices are realized using CVD and ALD of all active layers in a cluster tool. The floating gate consists of silicon nanocrystals. A high nanocrystal density was obtained through an enhanced nucleation rate by using disilane (Si 2H 6) as well as trisilane (Si 3H 8, known as Silcore®) as precursors for low-pressure chemical vapor deposition (instead of silane). The deposition temperature was 300–325 °C and the deposition pressure ranged between 0.1 and 10 mbar. To prevent oxidation of the nanocrystals, they were encapsulated directly after deposition with a 10-nm thick ALD-grown Al 2O 3 layer (blocking oxide). The deposition of Si-nanocrystals as a function of substrate temperature, precursor flow rate and total gas pressure was explored. Appreciable retention and endurance were measured on realized Al/TiN/Al 2O 3/Si-nanocrystal/SiO 2/Si(100) floating-gate capacitor structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.