Abstract

Considering finite-temperature screened electron-impurity scattering, we present a kinetic equation approach to investigate transport properties of two-dimensional massive fermions in silicene. We find that the longitudinal conductivity is always nonvanishing when chemical potential lies within the energy gap. This residual conductivity arises from interband correlation and strongly depends on strength of electron-impurity scattering. We also clarify that the electron-impurity interaction makes substantial contributions to the spin- and valley-Hall conductivities, which, however, are almost independent of impurity density. The dependencies of longitudinal conductivity as well as of spin- and valley-Hall conductivities on chemical potential, on temperature, and on gap energy are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.