Abstract
When Brassica napus plants are grown at low temperatures (e.g., 5°C) the rate of desaturation in leaves of newly formed fatty acids in both chloroplastic (MGDG) and cytosolic (PC) diacylglycerols is higher or more rapid than in plants grown at higher temperatures (e.g., 30°C). This low temperature-induced increase in the rate of desaturation is lost within hours if plants are transferred to higher temperatures. However, if plants are then returned to low temperatures they regain the ability to rapidly desaturate fatty acids. This process is restored relatively slowly (over days) in contrast to the more rapid loss at high temperatures. This has important physiological consequences on the level of unsaturated fatty acids in plant membranes and the process of temperature control of the fatty acid composition of membrane lipids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.