Abstract

The recent development of the CRISPR/Cas9-mediated gene editing technique has provided various gene knock-down and knock-in methods for Xenopus laevis. Gene-edited F0 individuals created by these methods, however, are mosaics with both mutated/knocked-in and unedited wild-type cells, and therefore precise determination and higher efficiency of knock-down and knock-in methods are desirable, especially for analyses of F0 individuals. To clarify the ratio of cells that are gene-edited by CRISPR/Cas9 methods to the whole cells in F0 individuals, we subjected Inference of CRISPR Edits analysis for knock-down experiments and flow cytometry for knock-in experiments to the F0 individuals. With these quantitative methods, we showed that low-temperature incubation of X. laevis embryos after microinjection improved the mutation rate in the individuals. Moreover, we applied low-temperature incubation when using a knock-in method with long single-strand DNA and found improved knock-in efficiency. Our results provide a simple and useful way to evaluate and improve the efficiency of gene editing in X. laevis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call