Abstract
Nano-sized barium titanate (BaTiO3) powders with ultra-high crystallinity have been successfully prepared by a hydrothermal condition at 170°C for only 2 h. In this study, the influence of processing parameters on the phase and the particle size of hydrothermally derived BaTiO3 powders was investigated. The powders were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), field emission transmission electron microscopy (FETEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and zetasizer measurement. As a matter of fact, the hydrothermal method guarantees the production of BaTiO3 nanoparticles with desired morphology for commercial applications. It was found that using Dolapix ET85 strongly enhances the crystallinity of BaTiO3 and stabilizes its crystal lattice. In addition, uniform particles, size distribution and purity of samples are highly dependent on the applied hydrothermal condition. Key words: Hydrothermal, nanotechnology, crystallinity, perovskite, barium titanate (BaTiO3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of the Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.